Что такое компьютерная графика и ее виды. Трехмерная графика и способы обработки видеоизображений. Цветовая модель RGB

На сегодняшний день домашний компьютер во многих случаях является не только средством для работы с офисными приложениями, но и мощным мультимедийным центром, с помощью которого можно создавать и обрабатывать фотографии, смотреть видеоролики и фильмы, слушать музыку или наслаждаться современными трехмерными видеоиграми.

Мощное развитие цифровых технологий, и в частности цифровой фототехники, превратили современные домашние компьютеры в настоящие фотоархивы, а редактирование всевозможных изображений теперь является одним из самых любимых занятий многих пользователей.

Но как обидно бывает, когда вы пытаетесь открыть на компьютере графический файл, а он не открывается? Наверняка многие из вас уже сталкивались с подобной ситуацией. Так в чем же причина?

Конечно, цифровой фотографией или иллюстрациями на сайтах не исчерпывается весь мир компьютерной графики, которую в общем можно разбить на три большие группы - растровая графика , векторная графика и трехмерная графика . При этом изображения одного типа могут иметь разный формат, который зависит от программ и способов, с помощью которых они были созданы. Давайте разбираться.

Это самый распространенный тип изображений, которые формируются с помощью отдельных точек, называемых пикселями , которые в итоге образуют матрицу фиксированного размера. Каждый пиксель имеет свои геометрические параметры и цветовой оттенок. Из-за крохотного размера точек, человеческий глаз не может различить их по отдельности и в большинстве случаев изображение сформированное таким способом нам кажется однородным. Но стоит только сильно увеличить картинку, как вы увидите, что она состоит из множества разноцветных прямоугольников. К растровой графике относится большинство изображений, которые встречаются нам во время работы на компьютере, включая и цифровые фотографии.

На увеличенном изображении зрачка справа видно, что картинка состоит из множества разноцветных квадратиков.

Основным параметром растровой картинки является ее физическое разрешение, определяющееся количеством точек (пикселей) размещающихся по горизонтали и вертикали. Например, разрешение 1920x1080 означает, что ширина изображения составляет 1920 пикселов, а высота - 1080. Учтите, что при одинаковом размере изображения его разрешение может быть разным, и чем оно выше, тем качественнее картинка. В общем, чем из большего количества точек будет состоять рисунок, тем оно будет реалистичнее.

Растровые изображения, как правило, хранятся в сжатом виде, которое происходит с помощью специальных программных алгоритмов. При этом само сжатие может быть двух видов: без потерь или с потерями. В первом случае картинку можно будет восстановить до оригинального состояния, то есть в котором она была до сжатия, а во втором, как вы понимаете, нет.

Наиболее распространенными форматами, обеспечивающими сжатие без потерь, являются BMP, PNG и GIF. В самом же широко используемом формате JPEG (JPG, JPE) используется сжатие с потерями. Еще один популярный формат TIFF имеет разные настройки сжатия, а вот RAW наиболее часто используется для хранения информации, получаемой с цифровых камер, без внесения в нее каких либо изменений. Практически все полупрофессиональные или профессиональные фотокамеры позволяют сохранять изображения именно в этом формате для последующей его обработки.

Программ, позволяющих создавать, редактировать и тем более просто просматривать растровые картинки великое множество. Но, наверное, самой популярной и профессиональной из них является графический редактор Adobe Photoshop (собственный формат PSD). Возможности этого инструмента воистину впечатляют и смогут удовлетворить потребности самых продвинутых пользователей. При этом Photoshop имеет в своем арсенале некоторые инструменты для работы с векторными и трехмерными изображениями, о которых мы поговорим ниже. Для тех же, кто не готов выкладывать почти тысячу долларов за данный продукт, можно попробовать в деле его облегченный вариант Photoshop Elements, стоимостью $100. Еще одним популярным продуктом в этой категории является редактор GIMP, который часто называют бесплатной альтернативой Photoshop, хотя сами разработчики с этим не согласны.

Впрочем, многим пользователям (особенно начинающим) для просмотра и редактирования растровых изображений хватит тех возможностей, которые предоставляют приложения, встроенные в систему Windows. К их услугам простенький редактор Paint и штатное средство для просмотра фотографий. В более продвинутых редакциях Windows для воспроизведения и каталогизации картинок можно использовать стильную оболочку Windows Media Center.

Для систематизации и упорядочивания коллекций, хранящихся на компьютере фотографий, рисунков и картинок, можно использовать бесплатное приложение Picasa или XnView, а так же более функциональный, но платный (чуть более 1000 рублей) графический редактор ACDSee. Хотя, как уже упоминалось, выбор программного обеспечения для работы с растровыми изображениями очень широк и недостатка, как в платных, так и бесплатных приложениях у пользователей нет.

Векторная графика

В этом случае рисунок состоит уже не из точек, а из различных геометрических объектов - простых фигур, линий, кривых и тех же точек. Большим плюсом такого построения изображений является их масштабируемость без потери качества. То есть если увеличить векторную картинку, она растянется и не распадется на отдельные пиксели, сохранив при этом плавность линий.

Одним из основных недостатков векторной графики является тот факт, что далеко не каждый объект может быть изображен с ее применением. Иногда для создания изображения подобного оригиналу может потребоваться огромное количество объектов различной сложности, что сильно увеличивает размер картинки и время ее отображения. Так же при особо малых разрешениях рисунка его масштабирование может осуществляться некорректно.

Векторная графика наиболее часто используется в простых изображениях, которые не нуждаются в фотореализме. Например, формат PDF использует модель именно этого типа графики.

С большой долей уверенности можно сказать, что самой знаменитой и популярной программой для работы с векторными изображениями является Corel Draw, а файлы, создаваемые с ее помощью, имеют собственный формат CDR. Хотя такие приложения как Adobe Illustrator (собственный формат AI, EPS), Xara Designer (собственный формат XAR), бесплатный Inkscape(собственный формат SVG) и другие имеют так же не малое количество поклонников.

Стоит отметить, что большинство популярных векторных редакторов не ограничиваются возможностями работы только в собственном (иногда закрытом) формате, а поддерживают огромное количество других, как векторных, так и растровых форматов изображений. Например, Corel Draw способен работать с более тридцатью самыми популярными форматами графических файлов.

Трехмерная графика (3 D )

Раздел компьютерной графики, предназначенный для отображения объемных объектов. По сути, трехмерное изображение является геометрической проекцией объемной модели на плоскость. Для его получения сначала происходит моделирование - создание математической 3D-модели сцены и объектов в ней, а затем визуализация (рендеринг) - построение проекции на основе выбранной физической модели.

Одним из основных призваний трехмерной графики является создание движения 3D-модели в пространстве, называемое анимацией, которая в наше время является неотъемлемой частью не только для современных компьютерных игр, но и телевидения, кинематографа, а так же научного и промышленного моделирования. Так же трехмерная графика широко применяется в архитектурной визуализации и печатной продукции.

Самыми популярными программами, используемыми для создания 3D графики и анимации, являются пакеты компании Autodesk: 3DS Max (собственный формат MAX) и Maya (собственный формат MA). Стоит отметить и универсальное комплексное приложение Maxon Cinema 4D (собственный формат C4D) с более простым интерфейсом, чем у продуктов Autodesk и поддержкой русского языка, что делает его особенно привлекательным для русскоязычной аудитории.

Процесс трехмерного моделирования, визуализации и анимации является очень ресурсоемкой задачей, так что если вы решите попробовать свои силы на этом поприще, придется раскошелиться на высокопроизводительный компьютер. Более того, и само программное обеспечение стоит очень недешево. Например, за 3DS MAX просят около 4000 евро. Хотя Autodesk пошла навстречу тем людям, которые не собираются извлекать коммерческую выгоду при использовании этой программы, выпустив для них бесплатную версию, которая становится доступна после регистрации на сайте компании.

Заключение

Наверное, было бы неправильно не сказать несколько слов о компьютерных ресурсах, которые требуются для комфортной работы с графикой. Если в основном вы планируете заниматься лишь просмотром изображений или осуществлять их простое редактирование, то для этих задач подойдет даже самый простой и маломощный ПК. А вот для работы с такими тяжеловесами, как Adobe Photoshop или Corel Draw понадобится достаточно мощный процессор и большой объем оперативной памяти (от 4 Гб). Но самой требовательной к системным ресурсам является трехмерная графика. Здесь для комфортной работы потребуется не только топовый процессор в сочетании с немалым объемом «оперативки» (8 Гб и более), но и мощная видеокарта, со своей собственной видеопамятью и графическим чипом. Недаром, самыми дорогими компьютерами считаются, те, которые ориентированы на любителей современных 3D-игр и людей профессионально работающих с 3D-графикой.

В заключении же хотелось бы сказать следующее. Не смотря на то, что компьютерная графика бывает разных типов, мы с вами, пользователи, видим на экране монитора именно растровую двухмерную картинку. Дело в том, что подавляющее большинство дисплеев, в силу их технологических особенностей, являются матрицей, состоящей из ячеек (пикселей), с помощью которых и формируется видимое изображение. Для вывода векторной графики на подобных устройствах используются программные или встроенные в видеокарту (аппаратные) преобразователи.

А вот трехмерная графика - это лишь плод нашего воображения. Ведь экран монитора может формировать только плоскую (2D) картинку, которая является лишь проекцией объемных объектов, пространство для которых мы придумываем сами. То же самое, касается и новомодных 3D-телевизоров или 3D-мониторов. На самом деле эти устройства показывают обычное двухмерное изображение, которое может быть построено особым способом, при просмотре которого через специальные очки, создается иллюзия объема.

Читатйте также:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Понятия компьютерной графики. Преимущества формата GIF. Отличительные особенности программы "Corel Draw". Команды главного меню Adobe Photoshop. Инструменты и их действия. Описание применения графического редактора Photoshop для обработки снимков.

    курсовая работа , добавлен 18.04.2015

    Понятие векторной и растровой графики, форматы растровых изображений TIF, JPG, GIF. Характеристика программ графики Adobe PhotoDeluxe, Paint Shop Pro, Adobe Photoshop, CorelDraw, AutoCAD. Создание приложений по расчету стоимости продукции с учетом скидки.

    курсовая работа , добавлен 08.12.2010

    Общие сведения о графических редакторах, понятия компьютерной растровой и векторной графики, форматов. Обзор и сравнительный анализ современных программ обработки и просмотра графических изображений: Paint, Corel Draw, Adobe Photoshop, MS PowerPoint.

    дипломная работа , добавлен 09.08.2010

    Технология компьютерной графики, форматы графических файлов. Общие сведения о компании и программных продуктах Adobe Systems Inc, элементы интерфейса. Краткое описание учебника Adobe Photoshop CS3, программное обеспечение, используемое для его создания.

    дипломная работа , добавлен 23.06.2010

    Импорт и копирование растровых образов в CorelDRAW. Преобразование объектов CorelDRAW в растровые образы. Эффекты растровых образов. Применение растровых цветовых масок.

    реферат , добавлен 21.12.2003

    Виды компьютерной графики. Photoshop – программа для создания и обработки растровой графики. Пакет программ для работы с векторной графикой CorelDraw. Обработка растровых изображений с использованием Photoshop. Этапы создания коллажа на тему "Музыка".

    курсовая работа , добавлен 27.12.2014

    Средства для работы с растровой графикой. Источники получения растровых изображений, их преимущества и недостатки. Растровые графические редакторы: Paint, Microsoft Picture-It, Adobe PhotoDeluxe, Paint Shop Pro, Microsoft PhotoDraw, Adobe Photoshop.

    презентация , добавлен 12.02.2014

    Понятие компьютерной графики. Основные характеристики цифровых фильтров, поддерживаемых программой Adobe Photoshop и принципы художественной обработки изображений на их основе. Принципы работы с многослойными изображениями в программе Photoshop.

    курсовая работа , добавлен 10.06.2014

Это наука, один из разделов информатики, изучающая способы формирования и обработки изображений с помощью компьютера. Компьютерная графика является одним из наиболее «молодых» направлений информатики, она существует около 40 лет. Как и всякая наука, она имеет свой предмет, методы, цели и задачи.

Если рассматривать компьютерную графику в широком смысле, то можно выделить три класса задач, решаемых средствами компьютерной графики:
1. Перевод описания в изображение.
2. Перевод изображения в описание (задача распознавания образов).
3. Редактирование изображения.
Хотя сфера применения компьютерной графики очень широка, тем не менее, можно выделить несколько основных направлений, где средства компьютерной графики стали важнейшими для решения задач:
1. Иллюстративное, самое широкое из направлений, охватывающее задачи от визуализации данных до создания анимационных фильмов.
2. Саморазвивающее - компьютерная графика позволяет расширять и совершенствовать свои возможности.
3. Исследовательское - создание средствами компьютерной графики изображения абстрактных понятий либо моделей, физического аналога которых пока не существует с целью корректировки их параметров.


Следует, однако, отметить, что выделение этих направлений весьма условно и может быть расширено и детализировано. Основными областями применения компьютерной графики считаются:
1. Отображение информации.
2. Проектирование.
3. Моделирование.
4. Создание пользовательского интерфейса.
Большинство современных графических систем используют принцип конвейерной архитектуры. Построение некоторого изображения на экране монитора происходит поточечно, причем каждая точка проходит некоторый фиксированный цикл обработки. Сначала первая точка проходит первый этап этого цикла, затем переходит на второй этап, в это время вторая точка начинает прохождение первого этапа обработки и так далее, то есть любая графическая система параллельно обрабатывает несколько точек формируемого изображения.


Такой подход позволяет существенно уменьшить время обработки всего изображения в целом, причем, чем сложнее изображение, тем больше получается выигрыш во времени. Конвейерная архитектура применяется для графических систем как на программном, так и на аппаратном уровне. На вход такого конвейера попадают координаты физической точки реального мира, а на выходе получаются координаты точки в системе координат экрана и ее цвет.
В рассмотренном цикле обработки точки можно выделить несколько этапов, основными из них являются следующие:
1. Геометрические преобразования.
2. Отсечение.
3. Проецирование.
4. Закрашивание.
На этапе геометрических преобразований координаты всех объектов реального мира приводятся к единой системе координат (мировая система координат). В компьютерной графике нередко используются приемы, с помощью которых сложные объекты представляются как совокупность простых (базовых) объектов, при этом каждый из базовых объектов может быть подвергнут некоторым геометрическим преобразованиям. В качестве базовых объектов может быть выбран произвольный набор объектов, но можно использовать и фиксированный набор Платоновых тел. Как правило, сложные геометрические преобразования представляются также через композицию относительно простых (базовых) преобразований, в качестве которых используются аффинные преобразования.


На этапе отсечения определяется, какие из точек попадут в поле зрения наблюдателя, и из этого множества выбираются те, которые останутся видимыми. На этом этапе применяются алгоритмы удаления невидимых ребер и поверхностей.
На этапе проецирование координаты точки (до сих пор остающиеся трехмерными) преобразуются в координаты экрана с помощью преобразования проецирования.
На этапе закрашивания осуществляется расчет цвета отображаемой точки с помощью методов локального или глобального закрашивания. Как правило, на этом этапе не удается использовать информацию об освещении всей сцены в целом, поэтому строятся модели освещенности различной степени детальности, которая во многом зависит от необходимости построения статического или динамического изображения.

16.01.1997

ИСПОЛЬЗОВАНИЕ МНОГОПРОЦЕССОРНОЙ АРХИТЕКТУРЫ ДЛЯ ДОСТИЖЕНИЯ МАКСИМАЛЬНОЙ ПРОИЗВОДИТЕЛЬНОСТИ ПРИ ОБРАБОТКЕ ИЗОБРАЖЕНИЙ. Двойное ускорение Photoshop Трехмерный рендеринг Требования к оперативной памяти Лучшие системы в области обработки изображений и трехмерной графики

ИСПОЛЬЗОВАНИЕ МНОГОПРОЦЕССОРНОЙ АРХИТЕКТУРЫ ДЛЯ ДОСТИЖЕНИЯ МАКСИМАЛЬНОЙ ПРОИЗВОДИТЕЛЬНОСТИ ПРИ ОБРАБОТКЕ ИЗОБРАЖЕНИЙ.

Кто бы мог подумать, что столь малые объекты, как пикселы, могут порождать столь большие проблемы. Крошечное цветное пятнышко на экране - всего лишь три байта данных - требует к себе весьма пристального внимания. Все дело в том, что изображения содержат очень много таких пятнышек. В самой маленькой картинке, которую вы загрузите из World Wide Web, пикселов больше, чем автомобилей, встретившихся вам по пути домой в час пик. А изображение Pro Photo CD объемом 72 Мбайт включает почти столько пикселов, сколько людей проживает в штате Калифорния. Управление такими полчищами порой требует усилий, сравнимых с усилиями, затрачиваемыми на управление большим городом. Более того, изображения постоянно усложняются и испытывают ваши нервы всякий раз, когда вы выполняете команду Open.

Поэтому совершенно не удивительно, что самые быстрые машины для обработки изображений имеют несколько процессоров. Genesis MP 720+ производства компании DayStar имеет на системной плате четыре 180-МГц процессора 604e. Не случайно MP 720+ самая дорогостоящая машина в нашем обзоре (8499 долл. в упрощенной конфигурации: без ОЗУ, жесткого диска и видеоплаты). Но если вы профессионально занимаетесь обработкой изображений, то стоит учесть, что Genesis MP 720+ способна продемонстрировать быстродействие, недостижимое для одно- или двухпроцессорных систем.

Для использования преимуществ многопроцессорной архитектуры приложения должны быть специальным образом переписаны (см. врезку "Технологии многопроцессорной обработки на компьютерах Macintosh: система, которая всегда успевает"). Наиболее продвинутой разработкой в этом направлении представляется Adobe Photoshop. В период подготовки этой статьи DayStar регулярно поставляла нам обновленные модули расширения, так что Photoshop с каждой неделей работал все быстрее. На Genesis MP проходят интенсивную обкатку и другие приложения. (В качестве примера можно привести ускоренные версии Canvas фирмы Deneba и Fractal Design Painter.)

Двойное ускорение Photoshop

Очень сложно точно измерить, насколько ускоряется выполнение операций в пакете Photoshop. Некоторые операции варьируются по времени очень сильно. Размытие по Гауссу, требующее более 90 с на PowerTower Pro 225, на MP 720+ заняло 21 с. А преобразование в режим CMYK, требующее более 5 с на однопроцессорных машинах, выполняется на MP 720+ за 2,4 с. В целом производительность четырехпроцессорной машины Genesis MP примерно вдвое превышает производительность самых быстрых однопроцессорных компьютеров.

Трехмерный рендеринг

Одним из краеугольных камней профессиональной работы с графикой является трехмерный рендеринг, который отвечает за преобразование моделей в графические образы фотографического качества. При работе над статьей у нас была возможность протестировать только одну программу обработки трехмерной графики, оптимизированную для использования на компьютерах с несколькими процессорами - Strata StudioPro Blitz. И здесь компьютер Genesis MP 720+ оказался значительно быстрее своих конкурентов. Рендеринг изображения, который на PowerTower Pro 225 продолжался чуть менее 4 мин, на MP 720+ был выполнен за 2,5 мин. Даже небольшой выигрыш во времени - это хорошо. Но и сегодня работа с трехмерными изображениями поглощает все ресурсы вашего компьютера.

Многие производители программ обработки трехмерной графики обещают в 1997 г. оптимизировать свои приложения для работы с МР. В число этих программ входят пакет Infini-D компании Specular International, Ray Dream Designer и ElectricImage Animation System. Хотя Live Picture не является программой трехмерной графики, ее механизм рендеринга, очень похожий на трехмерный рендеринг, вполне подходит для ускорения средствами MP. Фирма Apple также встроила поддержку MP в QuickDraw 3D. Но на текущий момент в повседневной работе можно использовать только StudioPro Blitz. Многопроцессорная обработка трехмерных изображений - пока дело будущего.

Требования к оперативной памяти

Работа с Photoshop представляется наиболее существенным фактором, определяющим необходимость перехода к MP. Лаборатория Macworld выполнила все опубликованные тесты для изображения размером 15 Мбайт при 100 Мбайт памяти, доступной Photoshop. В то же время наши неофициальные тесты показали, что при увеличении размера изображения или уменьшении объема оперативной памяти ускорение оказывается не слишком значительным. Фирма DayStar согласна с тем, что объем памяти до сих пор остается важнейшим фактором, влияющим на увеличение скорости работы пакета Photoshop. Если вы постоянно работаете с изображениями размером 50 Мбайт, а ваш Macintosh оснащен 60 Мбайт памяти, потратив 1000 долларов на радикальное расширение памяти, вы сможете достичь повышения производительности, которое с лихвой окупит эти расходы. Переходить на MP стоит только в том случае, если вы обладаете более чем достаточным запасом ОЗУ для удовлетворения прожорливого Photoshop.

И хотя Genesis MP 720+ обладает многими достоинствами, покупателям с ограниченными финансовыми ресурсами лучше приобрести двухпроцессорные конфигурации, предлагаемые компаниями DayStar, Apple и Umax. Эти компьютеры обеспечат существенный выигрыш в производительности, не будучи столь обременительными для кармана. Power Mac 9500/180MP показал очень хорошую производительность в наших тестах, лишь на несколько секунд отстав от Genesis MP 720+. На момент выхода обзора 9500/180MP стоил на несколько тысяч долларов дешевле, чем аналогично оснащенный 720+, и примерно на 1000 долларов дороже, чем PowerTower Pro 225.

Но если деньги не имеют большого значения и вы хотели бы получить машину, на которой можно творить, то Genesis MP 720+ - это самое лучшее, что есть в настоящее время. Вот-вот должна появиться новая версия Genesis MP - 800+ с тактовой частотой 200 МГц. Наше предварительное тестирование 800+ продемонстрировало 10-процентное увеличение скорости по сравнению с сегодняшним чемпионом.

Лучшие системы в области обработки изображений и трехмерной графики

@ Лучший результат.

Система Рейтинг 1 Общая оценка Photoshop цветовой баланс/настройка Photoshop градиент/
вращение/
масштабирование
Photoshop фильтры Photoshop трехмерный рендеринг Базовая цена, долл.
@ DayStar Digital Genesis MP 720+ 7,4 2,2 1,6 2,5 2,6 2,0 10 714 2
DayStar Digital Genesis MP 360+ 7,2 1,7 1,4 2,0 2,0 1,5 7814 2
Apple Power Macintosh 9500/180 MP 7,4 1,7 1,4 1,9 2,0 1,6 5699 3
Power Computing Power-Tower Pro 225 7,9 1,4 1,3 1,5 1,4 1,6 4995
Umax Computer Super-Mac S900L 604/200 7,8 1,4 1,2 1,4 1,3 1,5 3995
Apple Power Macintosh 9500/200 6,6 1,3 1,2 1,4 1,3 1,5 4899 3
1 Основывается на возможностях, исполнении, внедрении новых технологий, производительности, надежности, простоте использования и стоимости 2 Добавляется стоимость ОЗУ, накопителей, видеокарты и клавиатуры 3 Без клавиатуры

Методика тестирования Лаборатория Macworld выполнила более 40 различных операций в Adobe Photoshop и, кроме того, операцию рендеринга в большинстве популярных пакетов трехмерного моделирования - программе Studio Pro Blitz компании Strata, поддерживающей многопроцессорную обработку; Infini-D фирмы Specular International и Ray Dream Designer фирмы Ray Dream. На всех тестируемых машинах была установлена оперативная память объемом 128 Мбайт. За эталон взяты результаты, показанные компьютером Power Mac 9500/150 (Power Mac 9500/150 = 1,0). Системы представлены в порядке убывания общей производительности. Тестированием в лаборатории Macworld руководили Марк Херлоу и Крис Эйтервейк.

Построение трехмерного изображения

С ростом вычислительной мощности и доступности элементов памяти, с появлением качественных графических терминалов и устройств вывода была разработана большая группа алгоритмов и программных решений, которые позволяют формировать на экране изображение, представляющее некоторую объемную сцену. Первые такие решения были предназначены для задач архитектурного и машиностроительного проектирования.

При формировании трехмерного изображения (статического или динамического) его построение рассматривается в пределах некоторого пространства координат, которое называется сценой . Сцена подразумевает работу в объемном, трехмерном мире - поэтому и направление получило название трехмерной (3-Dimensional, 3D) графики.

На сцене размещаются отдельные объекты, составленные из геометрических объемных тел и участков сложных поверхностей (чаще всего для построения применяются так называемые B-сплайны ). Для формирования изображения и выполнения дальнейших операций поверхности разбиваются на треугольники - минимальные плоские фигуры - и в дальнейшем обрабатываются именно как набор треугольников.

На следующем этапе “мировые ” координаты узлов сетки пересчитывают с помощью матричных преобразований в координаты видовые , т.е. зависящие от точки зрения на сцену. Положение точки просмотра , как правило, называют положением камеры .

Рабочее пространство системы подготовки
трехмерной графики Blender (пример с сайта
http://www.blender.org
)

После формирования каркаса (“проволочной сетки”) выполняется закрашивание - придание поверхностям объектов некоторых свойств. Свойства поверхности в первую очередь определяются ее световыми характеристиками: светимостью, отражающей способностью, поглощающей способностью и рассеивающей способностью. Этот набор характеристик позволяет определить материал, поверхность которого моделируется (металл, пластик, стекло и т.п.). Прозрачные и полупрозрачные материалы обладают еще рядом характеристик.

Как правило, во время выполнения этой процедуры выполняется и отсечение невидимых поверхностей . Существует много методов выполнения такого отсечения, но самым популярным стал метод
Z-буфера
, когда создается массив чисел, обозначающий “глубину” - расстояние от точки на экране до первой непрозрачной точки. Следующие точки поверхности будут обработаны только тогда, когда их глубина будет меньше, и тогда координата Z уменьшится. Мощность этого метода напрямую зависит от максимально возможного значения удаленности точки сцены от экрана, т.е. от количества битов на точку в буфере.

Расчет реалистичного изображения. Выполнение указанных операций позволяет создать так называемые твердотельные модели объектов, но реалистичным это изображение не будет. Для формирования реалистичного изображения на сцене размещаются источники света и выполняется расчет освещенности каждой точки видимых поверхностей.

Для придания объектам реалистичности поверхность объектов “обтягивается” текстурой - изображением (или процедурой, его формирующей), определяющим нюансы внешнего вида . Процедура называется “наложением текстуры”. Во время наложения текстуры применяются методы растяжения и сглаживания - фильтрация . Например, упоминаемая в описании видеокарт анизотропная фильтрация, не зависящая от направления преобразования текстуры.

После определения всех параметров необходимо выполнить процедуру формирования изображения, т.е. расчет цвета точек на экране. Процедура обсчета называется рендерингом .Во время выполнения такого расчета необходимо определить свет, попадающий на каждую точку модели, с учетом того, что он может отражаться, что поверхность может закрыть другие участки от этого источника и т.п.

Для расчета освещенности применяется два основных метода. Первый - это метод обратной трассировки луча . При этом методе рассчитывается траектория тех лучей, которые в итоге попадают в пиксели экрана - по обратному ходу. Расчет ведется отдельно по каждому из цветовых каналов, поскольку свет разного спектра ведет себя по-разному на разных поверхностях.

Второй метод - метод излучательности - предусматривает расчет интегральной светимости всех участков, попадающих в кадр, и обмен светом между ними.

На полученном изображении учитываются заданные характеристики камеры, т.е. средства просмотра.

Таким образом, в результате большого количества вычислений появляется возможность создавать изображения, трудноотличимые от фотографий. Для уменьшения количества вычислений стараются уменьшить число объектов и там, где это возможно, заменить расчет фотографией; например, при формировании фона изображения.

Твердотельная модель и итоговый результат обсчета модели
(пример с сайта http://www.blender.org )

Анимация и виртуальная реальность

Следующим шагом в развитии технологий трехмерной реалистичной графики стали возможности ее анимации - движения и покадрового изменения сцены. Первоначально с таким объемом расчетов справлялись только суперкомпьютеры, и именно они использовались для создания первых трехмерных анимационных роликов.

Позже были разработаны специально предназначенные для обсчета и формирования изображений аппаратные средства - 3D-акселераторы . Это позволило в упрощенной форме выполнять такое формирование в реальном масштабе времени, что и используется в современных компьютерных играх. Фактически, сейчас даже обычные видеокарты включают в себя такие средства и являются своеобразными мини-компьютерами узкого назначения.

При создании игр, съемках фильмов, разработке тренажеров, в задачах моделирования и проектирования различных объектов у задачи формирования реалистичного изображения появляется еще один существенный аспект - моделирование не просто движения и изменения объектов, а моделирование их поведения, соответствующего физическим принципам окружающего мира.

Такое направление, с учетом применения всевозможных аппаратных средств передачи воздействий внешнего мира и повышения эффекта присутствия, получило название виртуальной реальности .

Для воплощения такой реалистичности создаются специальные методы расчета параметров и преобразования объектов - изменения прозрачности воды от ее движения, расчет поведения и внешнего вида огня, взрывов, столкновения объектов и т.д. Такие расчеты носят достаточно сложный характер, и для их реализации в современных программах предложен целый ряд методов.

Один из них - это обработка и использование шейдеров - процедур, изменяющих освещенность (или точное положение ) в ключевых точках по некоторому алгоритму . Такая обработка позволяет создавать эффекты “светящегося облака”, “взрыва”, повысить реалистичность сложных объектов и т.д.

Появились и стандартизируются интерфейсы работы с “физической” составляющей формирования изображения - что позволяет повысить скорость и точность таких расчетов, а значит, и реалистичность создаваемой модели мира.

Трехмерная графика - одно из самых зрелищных и коммерчески успешных направлений развития информационных технологий, часто ее называют одним из основных стимулов развития аппаратного обеспечения. Средства трехмерной графики активно применяются в архитектуре, машиностроении, в научных работах, при съемке кинофильмов, в компьютерных играх, в обучении.

Примеры программных продуктов

Maya, 3DStudio, Blender

Тема очень привлекательна для учащихся любого возраста и возникает на всех этапах изучения курса информатики. Привлекательность для учащихся объясняется большой творческой составляющей в практической работе, наглядным результатом, а также широкой прикладной направленностью темы. Знания и умения в этой области затребованы практически во всех отраслях деятельности человека.

В основной школе рассматривают два вида графики: растровую и векторную. Обсуждаются вопросы отличия одного вида от другого, как следствие - положительные стороны и недостатки. Сферы применения этих видов графики позволят ввести названия конкретных программных продуктов, позволяющих обрабатывать тот или иной вид графики. Поэтому материалы по темам: растровая графика, цветовые модели, векторная графика - будут востребованы в большей мере в основной школе. В старшей школе эта тема дополняется рассмотрением особенностей научной графики и возможностями трехмерной графики. Поэтому будут актуальны темы: фотореалистичные изображения, моделирование физического мира, сжатие и хранение графических и потоковых данных.

Большую часть времени занимают практические работы подготовки и обработки графических изображений с использованием растровых и векторных графических редакторов. В основной школе это, как правило, Adobe Photoshop, CorelDraw и/или MacromediaFlach. Различие между изучением тех или иных программных пакетов в основной и старшей школе в большей мере проявляется не в содержании, а в формах работы. В основной школе это практическая (лабораторная) работа, в результате которой учащимися осваивается программный продукт. В старшей школе основной формой работы становится индивидуальный практикум или проект, где главной составляющей является содержание поставленной задачи, а используемые для ее решения программные продукты остаются лишь инструментом.

В билетах для основной и старшей школы содержатся вопросы, относящиеся как к теоретическим основам компьютерной графики, так и к практическим навыкам обработки графических изображений. Такие части темы, как подсчет информационного объема графических изображений и особенности кодирования графики, присутствуют в контрольных измерительных материалах единого государственного экзамена.